Pass or fail: The out-of-the-box experience

Much has been written and said at security conferences, in magazines, and in online forums about network equipment requirements for putting physical security systems onto corporate networks. The majority of the discussions center on security video. This is to be expected, given that networked video has higher bandwidth requirements than all of the other physical security technologies combined (such as access control, intercom, and intrusion detection monitoring). Other discussions cover related topics like collaborating with IT.

There is very discussion about the wider scope of best practices for deploying physical security technology on enterprise networks. Such practices are needed because many security devices and systems were designed on the assumption that the equipment would be deployed on a completely independent security network rather than in an enterprise network environment.

In many organizations, fully independent networks for security systems require a level of duplication and cost that, at least for some systems and technologies, would be not only unwanted but needless. For organizations with enterprise-wide networking in place, an infrastructure exists to make security information and control available at all points in the organization where that makes sense for security, safety or business operational purposes.

Thus the authors have formed the Bp.IP Initiative, to advance best practices for deploying IP based security systems in enterprise environments, including practices that compensate or work around the network environment shortcomings of the spectrum of security products currently available.

Best Practices and Standards

When it comes to placing physical security systems onto an enterprise network, what defines best practice? Ultimately, best practices should result in better-than-otherwise performance; cost; compliance with standards; compatibility with existing network equipment and devices; and level of effort to deploy.

Standardization covers people, process and technology aspects of computing systems and networks. In the IT world, there are best practices that cover software design, development, deployment, maintenance, and administration-including testing and validation. Specific standards exist for computing and network devices, and for the security of networks and applications. Standards abound for telecommunications and network infrastructure.

IT practitioners learned long ago that standards and best practices allow them to deploy and manage very large and complex networks across geographic as well as language and cultural boundaries with these results:

- Highest quality, reliability and performance
- Lowest cost to deploy and maintain
- High scalability and adaptability
- Compatibility and interoperability among different brands
- Overall infrastructure that can evolve as areas of technology advance
- Stability even while undergoing improvements and upgrades
- Highest achievable ROI for money invested

When deploying physical security systems on an enterprise network, failing to follow applicable IT standards and good practices not only means walking away from many of these benefits, it can also mean introducing problems that raise network management costs and even interfere with other systems.

Why Best Practices are Needed

When putting security systems and equipment onto an enterprise network, best practices are needed to:

- prevent the systems and equipment from interfering with other systems;
- isolate what would appear to be "network attack behavior" from network segments that are monitored to catch and stop it;
- enable security networks, security systems and devices to benefit from existing network scan and monitoring programs;
- facilitate troubleshooting in the enterprise environment; and
- facilitate support from IT to leverage the organization's existing investment in IT resources (including expertise) as well as to reduce response and recovery time.

This is why the authors have collaborated to identify a selected set of criteria to use in establishing "best practice" examples. These are not necessarily "advanced practices" or "difficult to learn" methods. They are basic approaches that address issues and questions commonly of concern to enterprise IT departments.

These criteria are intended to address the fact that most installed security systems and devices, and many new security devices, are not fully network-ready. They were not designed to co-exist on a network with the many types of non-security systems and devices to be found on an enterprise network.

Some security system products lack desirable features. Some have mistakes in their implementation of IT standards and protocols. Some violate a network standard or protocol severely. Some correctly follow standards and protocols to a "T", but can't be managed in the way that IT groups want or need to manage networked devices. It is quite a varied landscape that results from a physical security systems deployment.

Managing Networked Systems

With good reason, IT operations personnel have come to value the management protocols and capabilities that are built into their network devices. Their value becomes clear when you look at their operational benefits. Instead of 50 or 100 cameras, IT has hundreds or thousands of PCs and other devices to manage (including printers, scanners, wireless access points, network switches and routers, etc.). They use network management software to tell when something is offline-before an operational problem results.

Managing with Murphy in Mind

Physical security operations folks are used to the "Murphy's law" scenario in which a new card reader is installed, and the one card that doesn't work at it belongs to the CEO or another high-level executive, who is trying to escort the board of directors into the building and out of a rainstorm. Is there an equivalent case in the IT world? There are many. Here is a story about printing a critical report.

Printing Saga

About 20 minutes prior to a critical meeting, a senior executive instructs an executive assistant to print an important confidential report that she has just received. The assistant discovers that he can't print it because the printer seems to be offline. But when the assistant walks over to the printer, everyone else seems to be printing to it without any trouble! What gives? The assistant, fearing a reprimand for being late with the report, copies the report to a USB drive and takes it to a friend in a different department whom he saw at the printer retrieving a document. This is a violation of the executive's specific instructions (as well as company policy) about the handling of that type of confidential material.

After delivering the printed report to a frustrated boss, well after the meeting has started, the assistant calls an IT support person make sure that the document is not being retained in any buffer or storage area in the printer. The result: job stress for the assistant, lost work time, violations of confidential information protection, and an unhappy senior executive who looks to peers to have been lax in preparing for the critical meeting.

Avoiding "Murphy" Consequences

The way that IT folks prevent that kind of scenario from happening includes monitoring the health of workstations, servers, printers and other network devices. By being alerted to an offline or malfunctioning network switch or other device (in this example, a device on the network between the assistant's computer and the printer), the problem can be remedied quickly and trouble prevented. With thousands or tens of thousands of computers and network devices to manage, high-risk systems or products (those with a likelihood of labor-intensive maintenance or troubleshooting) are avoided like the plague-at least when those who have to support the technology are listened to.

The comparatively small scale of physical security system deployments (independent from enterprise IT infrastructure) has allowed a much more lax approach for deploying security systems than IT can accept or tolerate.

The comparatively small scale of physical security system deployments has allowed a much more lax approach than IT can accept or tolerate. Now that the size of networked security systems is scaling up in most organizations, the lax approach is no longer feasible, especially in today's budget-constrained operating environment.

For example, many networked physical security system deployments are done using unmanaged network switches. These are switches can't report their health or status to network monitoring software. Thus if a camera's video stream is lost, someone has to physically go to the camera and to network equipment rooms to troubleshoot the problem. Many video systems are not set up with real-time video loss alarms, and not all cameras are closely monitored by personnel. This often results in problems going undiscovered for days, weeks or months -as many TV news stories report each year, including for two major airports this year.

Sound Engineering

The way that systems are designed and deployed must be done in a manner that highly facilitates their management and maintenance. This is not a new concept. In 1877 marine engineer Alfred Holt stated to a meeting of the Institution of Civil Engineers (referencing both the yet-unnamed "Murphy's Law" and best engineering practice):

"It is found that anything that can go wrong at sea generally does go wrong sooner or later.... Sufficient stress can hardly be laid on the advantages of simplicity. The human factor cannot be safely neglected in planning machinery. If attention is to be obtained, the engine must be such that the engineer will be disposed to attend to it."

This is what engineers in the IT domain have learned: that their equipment and networks must be designed and deployed so that technicians will be disposed (inclined) to attend to them. That can't be said, for example, for video deployments where "black video" goes undetected and unattended to for days, weeks or months, and where system setup and troubleshooting is complicated.

Security manufacturers, systems integrators and security consultants who do not take sound deployment factors into consideration, can't excuse themselves by saying or thinking that these are "new IT topics" that the physical security industry is just a little late in catching up on. As Alfred Holt's words indicate, these critical system success factors were known to systems engineers in the 1800's. In reality, the physical security industry is 200 years late in taking sound deployment engineering into account. It is only because the industry's customers are not engineers that the industry's comparatively low caliber of deployment engineering practice is commonly accepted.

To get a good look at best practices in a related industry, see the excellent white paper by TAC titled, "Smart Facility Automation Solutions for Regulatory Compliance". In particular look at pages 11 and 12 that deal with Good Automated Manufacturing Practice (GAMP). Nearly all of these practices apply to security systems. (Download from:

The point is that IT's design and operations practices are much more than an IT-specific way of doing things. They are universally sound engineering practices applied to information technology deployment.


Enterprise IT groups look to have systems and equipment that can be deployed quickly and accurately, with a minimal amount of effort, and that can be operated at low cost and low risk. IT groups have personnel who are assigned the task of evaluating candidate technology to see how they comply with these general requirements.

Evaluation Criteria

The first step in such an evaluation is informally referred to as judging the "out-of-the-box experience". What does it take to unpack, connect and "fire up" the system or device? What kind of problems can be anticipated? What are the general characteristics of its network traffic? How accurate and complete is the documentation?

The key question is: Will the product PASS or FAIL the out-of-the-box experience?

Most security industry manufacturers, integrators and consultants are surprised to learn what IT evaluators can conclude from the out-of-box experience. Tables 1 and 2 are charts showing some simple evaluation actions for networked appliances and end devices. It includes example conclusions that can be drawn, expressed in informal language, for the initial evaluation steps from opening the box to examining the documentation.

Most vendors and security practitioners have never heard of such an evaluation. Yet in July 2010 a Google search on the term out-of-the-box-experience returned 97.5 million results. These results include a wealth of product reviews, not limited to computer or network products, as well as two

Wikipedia entries on the topic:


It is important to note the valid conclusions that are likely to be drawn by the IT evaluator. These are the points that physical security manufacturers and system providers, and their physical security practitioner customers, are generally not aware of.

Most security industry manufacturers, integrators and consultants are surprised to learn what can be validly concluded from the out-of-the-box experience. Tables 1 and 2 below are charts showing some simple evaluation actions for networked appliances and devices, including example conclusions that can be drawn for the initial evaluation steps from opening the box to examining the documentation.

Although these example evaluation criteria are being presented in an apparently formal fashion in Tables 1 and 2, such evaluations are often not very formal. They are done mostly against the background of common experience. The more experienced an evaluator is, the less forgiving the evaluator will be, because those points of forgiveness are likely to be points of pain and regret somewhere down the line. "Once bitten- twice shy" is an old and common expression. But "thrice bitten-no way!" is a more likely scenario for an experienced evaluator. If the security product will be used in any way to achieve regulatory compliance, the evaluation bar will be set particularly high, and with good cause (see the GAMP white paper referenced above).

The authors have spoken to that it would be unfair to judge their products on the out-of-the-box experience, because they have many successful deployments. But are they defining "success" in the same way that enterprise customers do? It is completely fair to the customer to judge the likely product deployment costs and efforts in large part on the out-of-the-box experience. It's not just the product that is being evaluated. It's the vendor as well, based upon how well the vendor enables its customers to be successful with low-effort deployments and cost-effective customer internal support.


Tables 1 and 2 are only a partial listing of considerations and findings from such an evaluation.

If you are an enterprise security practitioner who likes the performance or specifications of a specific networked security product, you would do well to have that product approved, or even established as a standard, by your IT department.

Before you or your systems provider submit the product to IT for approval or evaluation, be sure in advance that all of the out-of-the-box experience ingredients are included in the evaluation package. If you can't obtain them all, ask yourself whether or not the vendor cares enough about supporting your company's ease of deployment in an enterprise networked environment.

About the Authors

Ray Bernard, PSP, CHS-III is the principal consultant for Ray Bernard Consulting Services (RBCS), a firm that provides security consulting services for public and private facilities. He is founder and publisher of The Security Minute 60-second newsletter ( For more information about Ray Bernard and RBCS go to or call 949-831-6788. Mr. Bernard is also a member of the Subject Matter Expert Faculty of the Security Executive Council (



James Connor is founder and CEO of security technology consultancy N2N Secure, a security consulting firm specializing in migration of analog to converged IP-based Physical and Logical security solutions. He is the former Senior Manager of Global Security Systems for Symantec Corp.






Rodney Thayer is an independent network researcher focusing on network attack and defense issues as they relate to business infrastructure. Current security research (exploit development) includes product and infrastructure evaluations, and training/lecturing on computer security topics. Mr. Thayer's background is in engineering, deployment and evaluation of computer and network security solutions. He has participated in the authoring of IETF standards, written product reviews for trade publications, taught at venues like RSA and Black Hat, played Capture The Flag at Defcon (on a winning team), and has consulted for large and small enterprises and Infrastructure Operators.