Slovenian laboratory uses megapixel cameras to observe rare amphibian

Arecont Vision cameras enable research on European cave salamander in dark, humid environment

The Tular Cave Laboratory in Slovenia (Jamski laboratorij Tular) was established in 1960 by Marko Aljancic, a biologist specializing in subterranean species, who populated the laboratory with the European cave salamander (Proteus anguinus). The blind amphibian dwells in the subterranean waters endemic to the Dinaric Karst, where groundwater has carved underground limestone caverns. It spans from East Italy through Slovenia, over coastal Croatia to Herzegovina and part of Bosnia. The highly endangered Proteus can live up to 100 years, is the only European cave vertebrate and, at about 10 to 12 inches long, is by far the largest cave animal in the world. Tular is the biggest cave laboratory in Slovenia and one of the few places where the endangered European cave salamander has been successfully bred outside its natural habitat. The laboratory also maintains a colony of an extremely rare dark-pigmented subspecies endemic to Slovenia. The cave laboratory has studied the ecology and behavior of Proteus, primarily its breeding, for more than 50 years. Conditions at the Tular Cave Laboratory include total darkness and near 100 percent humidity. The laboratory maintains 40 Proteus in four large laboratory pools to simulate their natural cave environment, with clay on the bottom and rocks for hiding. Experiments are based on observation and are carefully designed not to harm or stress the animals. The laboratory is a constituent body of Slovenia's Cave Biology Society and is led by Gregor Aljancic.


A real-time and long-term video monitoring system was needed to observe behavioral experiments and obtain adequate information on Proteus behavior. The system needed to use motion detection to avoid capturing useless video of long periods of Proteus inactivity, and also needed to provide a reasonable balance of video data quantity, quality and required storage capacity. Video cameras needed to capture clear details to provide additional information to help the laboratory design new studies. The system would need to use infrared (IR) light so as not to disturb the animals, who are stressed when their skin senses the visible spectrum of light. Eventually, the system would need to incorporate five to seven cameras that would be permanently mounted and combined into a 24/7 monitoring system accessible over the Internet as the "TularVirtualLab."

Megapixel Solution

From the fall of 2009 to the spring of 2010, the Tular Cave Laboratory searched the market for a video camera to meet its needs, especially the need for high-resolution images. By far, Arecont Vision's AV5105DN 5 megapixel camera was the only one to fit the criteria at a reasonable price (the few other alternatives were extremely expensive). The laboratory also preferred a U.S. made product in terms of expected quality and durability in the extreme cave conditions.

Video monitoring of Proteus behavior began with shorter behavioral experiments (up to 30 days), with the system removed from the cave once the experiment was finished. Tular Cave Laboratory uses the Arecont Vision AV5105DN 5 megapixel camera equipped with a 4.5-13mm varifocal IR lens and connected to a computer running Arecont Vision AV100 software as the video management system. The camera is mounted directly above the monitored pool (3 to 6 feet away) or experimental aquarium (1 to 3 feet away). Because of high humidity and dripping water, the camera is enclosed in a plastic waterproof housing. The AV100 software provides video recording based on motion detection triggered by the behavior of Proteus.

This content continues onto the next page...