How to see better in the dark

Nov. 8, 2012
5 features you should look for in a low-light camera

Whether or not it’s deserved, IP cameras have developed a reputation for poor performance in low light. And because low-light conditions exist with nearly all camera installations, this perception has inhibited some organizations from adopting the technology, in spite of its many strategic and far-reaching benefits.

The challenges have had less to do with delivering the video over an IP network than with the CMOS sensors that most IP cameras use. Historically, these sensors have been able to deliver higher megapixel resolution, but they weren’t able to match the CCD sensors often used in analog cameras for low-light performance. Thus, some IP cameras generate grainy images at low light, resulting not only in decreased picture clarity but also in higher bandwidth and increased storage, since compression techniques interpret the graininess as motion in the scene.

Over the last year, advancements in technology have enabled the IP camera to function as a more useful tool in low-light situations. Camera manufacturers have been able to leverage advances in sensors, encoding and processing power born in the automotive and other industries to resolve many of these issues. And High Profile H.264 compression helps to more effectively manage bandwidth usage, while more sensitive elements in the sensors provide higher-quality images.

Companies hoping to benefit from these advances should look for the following features in low-light IP cameras:

1. True Day-Night

True Day Night capability is achieved by using an IR Cut-Filter Mechanism (IRCF). Many of the sensors used in today’s security cameras are sensitive to both visible light (380nm~740nm) - essentially what the human eye can see - as well as near infrared light (750nm~1100nm), which is emitted from sources such as sunlight, moonlight, halogen fixtures, etc.

Unfortunately, to produce accurate colors, most of the IR light needs to be blocked or filtered out. Many cameras do this by using an IR Cut Filter, which sits in front of the sensor like a pair of sunglasses. With this True Day Night /IRCF feature, the camera is equipped to remove these "sunglasses" when the light levels drop below a certain threshold. This enables more of the visible light and available IR light to get to the sensor, dramatically improving low-light performance.

Because of the filtering or blocking of the IR light, color accuracy usually suffers in this mode. Most implementations also remove all color information, yielding a black-and-white image that is not only vastly more usable but also cleaner without chroma noise. This improves image clarity while decreasing noise or graininess in the image, which can be interpreted as motion in the encoder. When the encoder compresses an image with a higher level of motion or noise, the bandwidth consumption can skyrocket.

One other True Day Night technology differentiator is what manufacturers do when the IRCF is in the "out" or removed position. The better ones replace the IRCF with a piece of dummy glass to help minimize the spectral offset between visible and IR light. This helps keep the image in focus and retain auto focus stability.

Be aware there are cameras that have a "Quasi" or soft Day Night (SDN) feature - this is not the same thing as True Day Night. These cameras go black-and-white when the light levels are low but they have no mechanism to remove the IRCF "sunglasses," so they cannot take advantage of all the visible and IR available light. Marketing literature has made this a source of confusion in our industry, so make sure you know which Day Night implementation your cameras of interest have.

Also note that the use of IR-corrected lenses is highly recommended with True Day Night cameras. Since visible and IR light are in different wavelength bands, they focus at different points - creating a potential problem of focus shift when switching between color and black-and -white modes. A good quality IR-corrected lens can compensate, meaning fewer service calls to correct the focal points.

For applications at the very bottom of the low-light range, look for a camera that supplies its own IR illumination.

2. Digital Slow Shutter

This is a feature where the camera’s electronic shutter is slowed to below normal speed to allow additional light to be captured by the sensor. It works very well in improving low-light performance but has some side effects including image noise and a potential to blur moving objects.

If a camera has this feature, it is important to see how well it was implemented, as not all executions of slow shutter are equal. Besides the noise and blur, be on the lookout for how quickly the camera reacts to large or fast-changing light levels, and how well it recovers and settles. A poor implementation can yield a complete loss of usable video for 5 to 10 seconds while the camera tries to recover to a proper exposure level.

More of the slow shutter is not always better. We have found in scenes that include motion anything slower than 1/3 to 1/4 of a second starts to be counterproductive due to image blur. At 1/2 second someone can actually run through the scene and not be seen.

3. Digital Noise Reduction (DNR)

This is a feature that can help improve a low-light image by removing (or masking) some of the luminance and chroma noise present in a low-light image. It does not actually help increase low-light sensitivity like some of the other features mentioned, but it can improve object recognition and help reduce encoder, bandwidth and storage needs. This, too, can have adverse side effects on moving objects like image smear, image softening and even image stutter. As with slow shutter, not all implementations are equal so it is recommended to compare cameras and evaluate overall benefit vs. side effects. Users should also pay attention to whether DNR affects performance in bright lighting, as it should not.

4. Tinted Bubbles

This is an obvious but often overlooked item when projects are bid. Many cameras today are shipping in mini-dome configurations that include a housing and protective bubble. If low-light performance is paramount for certain locations, try to make sure tinted or smoked bubbles are not used. Depending on materials, they can be 1 to 2 f-stops darker than a clear bubble. For every f-stop, half of the total light is lost. This means the amount of light getting to the sensor would be reduced by 50 percent (1 f-stop) to 75 percent (2 f-stops) just because of the bubble.

2. High Profile H.264 compression

There are multiple profiles of H.264 and users should be wary of which profile a manufacturer uses. High profile is generally more processor intensive and is a bit harder for a manufacturer to deliver well,but the result is worth the development effort.

Buyers should be aware of the base profile H.264 implementations. While high profile is used for media such as Blu-ray, base profile is used for applications like teleconferencing. The image quality standards between those two profiles speak for themselves.

If you are concerned about low-light performance, line up the camera options where they are intended to be used and test them against each other. Camera shoot-outs should be the norm for end-users who care about image quality in any conditions, and this is especially true for low-light applications.

At the end of the day, this is the best way to ensure that the best technology will be chosen for the application.

Steve Carney is director of product management at Tyco Security Products, responsible for the American Dynamics product portfolio. He can be reached at [email protected].

About the Author

Steve Carney

Steve Carney is director of product management at Tyco Security Products, responsible for the American Dynamics product portfolio. He can be reached at [email protected].