Tech Trends: SFP Finally Moving into Security

Feb. 6, 2014
Small Form Factor Pluggable transceivers can change the way security video is transmitted

You may remember the early days of fiber optic transceivers, where, in addition to specifying the function that was needed — for example, RS-232 to fiber optic — you had to define wavelength, number of fibers, connector type and possibly optical budget. In addition, there might have been the choice of end-point, repeater or multi-port star or hub. All of this made for a dizzying array of part numbers and complicated the specification, ordering and stocking of transceiver products.

There’s actually technology that’s been around the datacom and telecomm industry for almost 15 years that addresses this dilemma. Because the security industry is squarely in the middle of a shift to IT equipment and protocols, we are seeing switches and routers that reflect this. I’m talking about pluggable transceiver modules.

Enter the SFP

The GigaBit Interface Converter (GBIC) was introduced in 1999, and was originally specified for Fiber Channel applications. It allowed a small module to plug into transmission equipment using Fibre Channel or Gigabit Ethernet.

Shortly thereafter, a mini GBIC called an SFP (small form factor pluggable) transceiver was introduced. The SFP has a slightly smaller footprint than the GBIC and is used for data rates up to 4 Gb/s. It has various fiber options, including Dense Wavelength Division Multiplexing (DWDM), and it has an RJ-45 copper option. Fiber interfaces can be multi-mode or single mode, implement different fiber optic Ethernet standards (relating to wavelength, distance, and data rate), and support different fiber optic connectors, although LC is the most common.

Back in 2000, a number of industry players, including Agilent, Fujikura, IBM, Lucent, Molex, and Tyco Electronics agreed to the Small Form-factor Pluggable (SFP) Transceiver Multi-Source Agreement (MSA) “to establish internationally compatible sources of a pluggable fiber optic transceiver module in support of standards for fiber optic systems. Each party expects that the establishment of compatible sources for an interchangeable transceiver module will allow the entire fiber optic marketplace to grow more rapidly

The MSA defined both physical and electrical parameters for devices that would plug into single- or multiple-unit receptacles (cages) and be hot-swappable. Some optical SFP transceivers now support digital diagnostics monitoring (DDM) functions, also known as digital optical monitoring (DOM), giving users the ability to monitor real-time parameters such as optical output power, optical input power and temperature.

The Impact on Security

The first way this technology impacts the security industry is fairly obvious.  You can purchase, for example, a managed switch with SFP capability and add SFP modules as you need them to suit the media and distance needed. If there are spare receptacles, there’s future expandability.

Note that some ports may be designated as either/or, where you choose to use an existing RJ-45 jack or populate an SFP on the same port number. The beauty is that you pay only for the optics you need at the time while, on the supply side, manufacturers and resellers can simplify their inventory.

A word of caution relates to manufacturer warranty and support. While researching Cisco’s policy, I found this: “When a customer reports a product fault or defect and Cisco believes the fault or defect can be traced to the use of third-party memory products, cables, GBIC’s, filters, or other non-Cisco components by a customer or reseller, then, at Cisco's discretion, Cisco may withhold support under warranty or a Cisco support program...” Also, online postings suggest that third-party SFP’s may not work out of the box and may require a Cisco IOS command such as “service unsupported-transceiver” to successfully operate. It is always best to check.

Next, it was with pleasant surprise that I spotted at the November Secured Cities Conference an IP video camera by TKH whose network interface is an SFP module, allowing a number of variations for the physical media. In the olden days of analog, companies built media converters into the camera housings — why has it taken this long for a camera company to embrace a built-in SFP port? Further, I spotted in their booth an SFP module with a BNC-pigtailed coax protruding to the side. They had actually engineered an IP-over-coax link into an SFP form factor. Makes me wonder about PoE…

So, 14 years after the introduction of this very useful and sensible communications technology, we are witnessing the broader adoption of this in security. At least we can be sure that the kinks have long been worked out. For my part, I’m hoping to see more application-specific innovation like that displayed by TKH.

Ray Coulombe is Founder and Managing Director of and He can be reached at [email protected], through LinkedIn or on Twitter @RayCoulombe. To request more information about TKH Security, please visit

About the Author

Ray Coulombe

Ray Coulombe is founder of, the industry’s largest searchable database of specifiers in the physical security and ITS markets. He is also Principal Consultant for Gilwell Technology Services. He can be reached at [email protected] or through LinkedIn.